Transpower Customer Webinar 10 December 2025

Kia tau te rangimarie
O te Rangi e tū iho nei
O Papatūānuku e takoto nei
O te taiao e awhi nei
Ki runga i a tātou
Tihei Mauri ora

Opening **Karakia**

Translation

Let the peace of the sky above us of the earth laid out here and of the all-embracing universe settle upon us Breathe the breath of life

Topic	Presenter	Time	
Welcome, agenda and karakia	Tim Duguid, Head of Customer & Commercial Graham McMurtry, Customer Solutions Advisor	13:30 – 13:35	
Space weather	Andrew Renton, Senior Principal Engineer - Grid Development (10 mins)	13:35 – 13:45	
em6 data platform updates	Nick Warren, Product Owner (10 mins)	13:45 – 13:55	
Pricing and TPM review	Victoria Parker, Head of Grid Pricing Will Hancock, Regulatory Advisor - Grid Pricing (15 mins)	13:50 – 14:05	
Connections update – end of year wrap	Rupert Holbrook, Customer Connections Project Director (10 mins)	14:05 – 14:15	
Q & A	Tim Duguid	14:15 – 14:30	
Ngā mihi e karakia	Tim Duguid & Graham McMurtry	14:30	

Space weather

Andrew Renton, Senior Principal Engineer - Grid Development

Last time we saw an extreme event

• 1859 Carrington

• 1886/8 Bullendale and Reefton

• 1902 Buffalo – Niagara repair

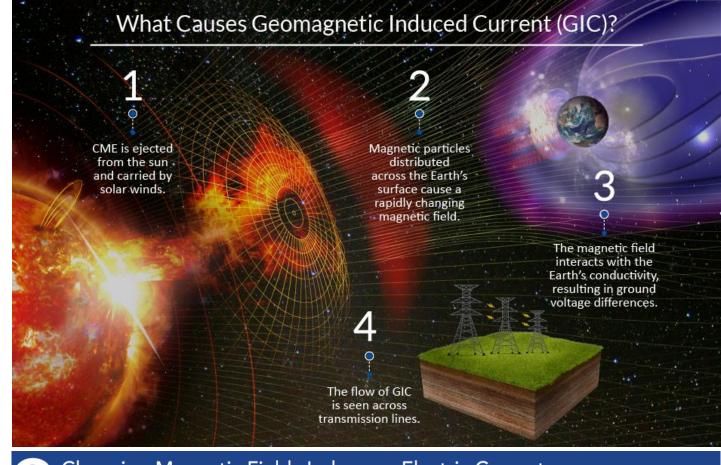
crew for 42km 11 kV line

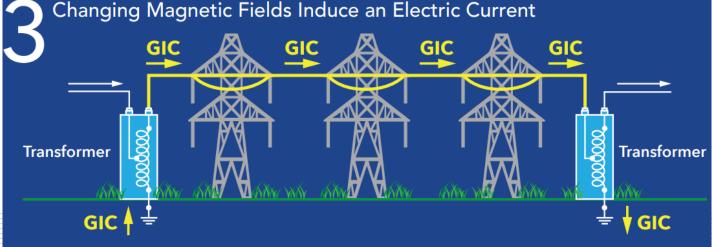
built 1896

Refresher - why we need to practice

A planet sized generator using Faradays law.

Magnitude GIC governed by CME speed, density, polarity, system resistance, ground resistance.


An electric current produces a magnetic field


The magnetic field produces a voltage in the ground.

Voltage differences (10-30V/km) between the ground points drives a current between them.

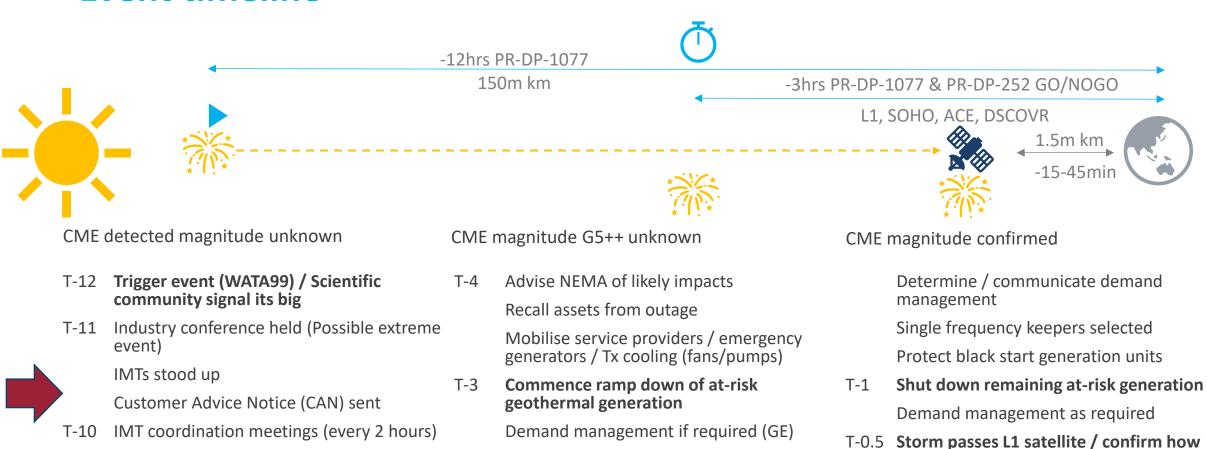
Current takes the path of least resistance either the ground or long metal connection like our transmission lines. Why a transmission issue not distribution.

Saturates transformers, heating, reactive power draw, equipment damage and voltage collapse.

Expected event consequence by magnitude and island

Expected CME GIC System Impacts										
Ev	ent	Event Expected Field South Island			North Island					
Cate	gory	Probability	Change	Likely Impact	Mitigations	Likely Impact	Mitigations			
		(yrs)	(nT/min)							
(NOAA SWPC)	(-)	1:10 - 15	<500	Minor	PR-DP-1077 Implement monitoring	Insignificant	PR-DP-1077 Implement monitoring			
	×e			Isolated tripping and alarms	PR-DP-252 Implement Lower SI only	Isolated tripping and alarms	Await L1 confirmation			
	ods				Await L1 confirmation					
	Extreme (Transpower)	1:30	>500 <1,000	Moderate	PR-DP-1077 Implement monitoring	Minor	PR-DP-1077 Implement monitoring			
				Isolated tripping and alarms	PR-DP-252 Implement Lower SI only	Isolated tripping and alarms	Await L1 confirmation			
					Await L1 confirmation					
					Additional 100MVAR reactive plant made available					
	Ш I				Additional ToolvivArreactive plant made available					
	Catastrophic (Transpower)	1:30-50	>1,000 <2,500	Significant	PR-DP-1077 Full implementation	Moderate	PR-DP-1077 Implement monitoring			
				Generation and demand loss expected	PR-DP-252 Implement SI only	Some trippings and alarms	PR-DP-252 Prepare for NI			
					Call before L1	Likely loss of HVDC	implementation			
G5 (I					MAN-TWI islanding,	15-20% demand reductions	Await L1 confirmation			
Extreme G					1200MW SI generation removed		Possible demand management if SI			
							generation lost			
					Recall all outages					
		1:100	>2,500 <4000	Extensive	Additional 200MVAR reactive plant made available PR-DP-1077 Full implementation	Significant	PR-DP-1077 Full Implementation			
		1.100	72,300 < 4000		· ·	*	·			
				Significant loss of generation and demand		Some trippings and alarms	PR-DP-252 Implement nationally			
					Call before L1	20-30% demand reduction	Call before L1			
				INV, NMA, All Canterbury & South Canterbury, Nelson & Marlbough loss of	MAN-TWI islanding	Loss of HVDC	Recall all outages			
				supply	Recall all outages	Isolated supply loss HEN, HEP, BPE	Additional 100MVAR reactive plant			
				WestCoast islanded 30% self supply	Additional 200MVAR reactive plant made available		made available			

Event timeline


Industry conference held (outline response

CAN requesting assets made available,

plan)

return outages

T-9

Grid Emergency)

T-2

Declare Grid Emergency

Switch out GIC circuits

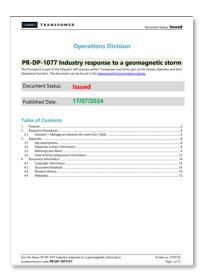
IMT coordination meeting (Go/No Go for

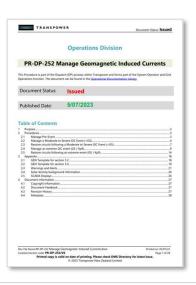
extreme storm will be

T=0

Storm hits – ongoing management of

system, including demand management,


responding to faults, until all clear given

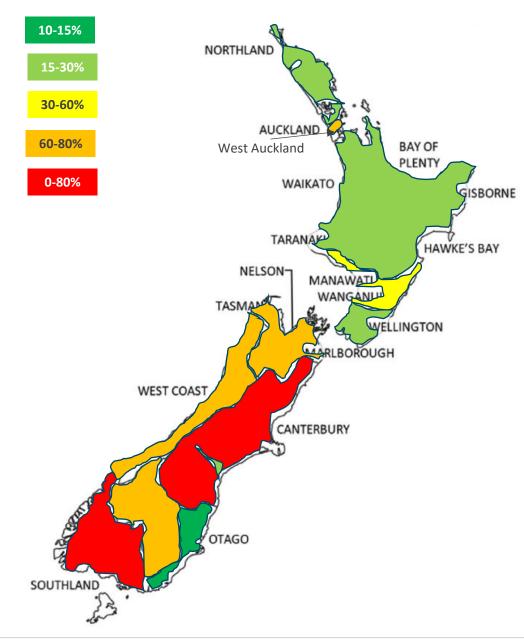

Operational switching plan – predicted result

Used actual data to:

- Validated and published plan PR-DP-252 & PR-DP-1077
- Extrapolate to compare to historical record
- Compare to NERC & Carrington events

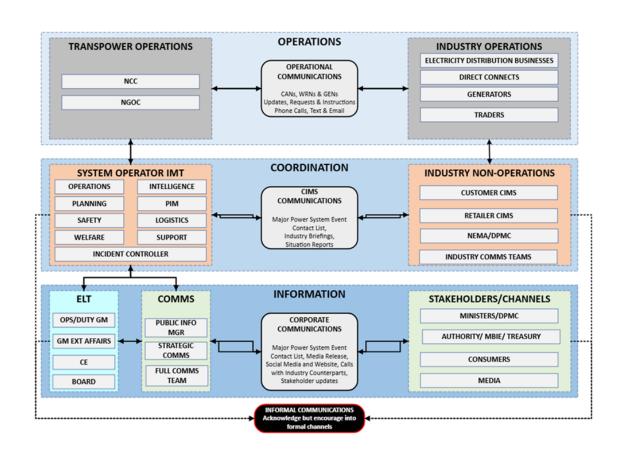
Scenario scaled 1989 event, winter peak demand, full security, objective minimise total system GIC and peak GIC in most at threat assets, by switching assets out of service.

How an event would play out today

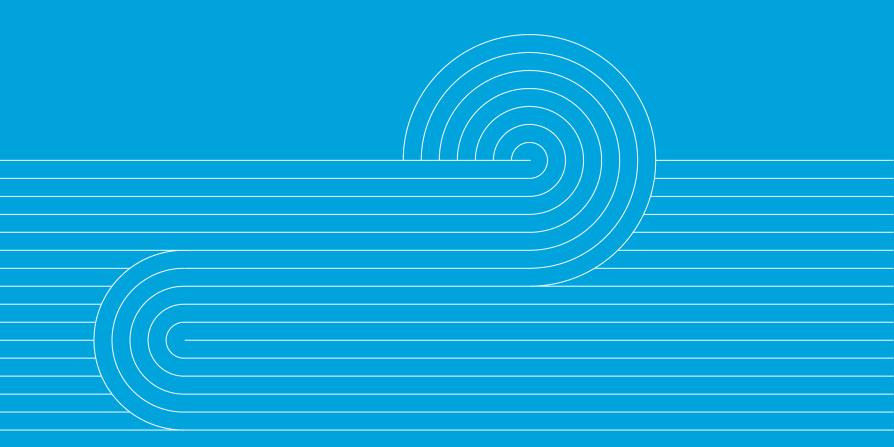

If a design level event happened today before additional hardware mitigations installed-

- MAN, OHA, OHB, OHC, TKB approximately 1600MW generation at risk of going offline
- Only OAM, STU, SDN, HWB, EDN, GOR, BAL substations with supply at N security
- TWI likely offline
- SI substations likely offline including INV, NMA, TIM, ASB, ISL, BRY, STK and West Coast
- NI substations likely offline HEN & GLN
- NI substations HEP, GLN, BPE with up to 50% load reduction
- NI energy shortfall likely to require 20% demand management due to limited SI generation.

We are working on mitigations to reduce the impacts but this will take time to implement.


For now we need to practice existing demand management procedures and processes.

Expected Demand Reduction

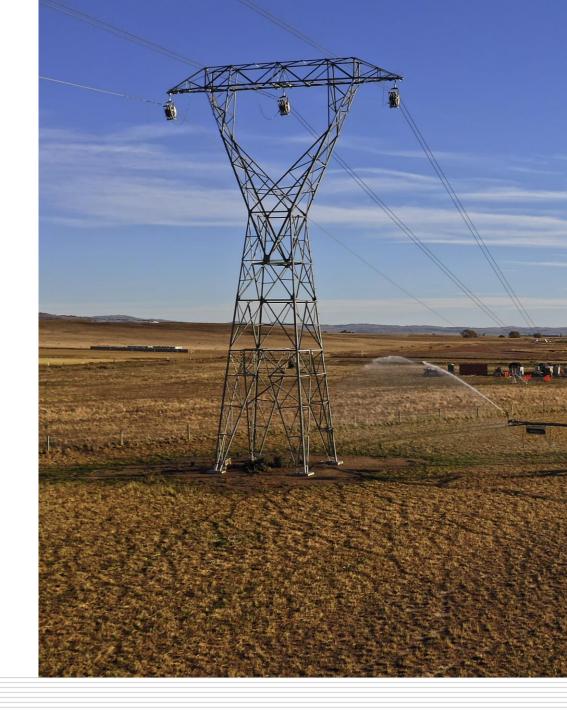

Upcoming work

- We will hold an online refresher webinar on space weather in February 2026.
- A follow-up Q&A will be held to answer questions in March 2026.
- We will utilise standard reporting and management procedures and documentation like other significant power system events:
 - Demand Management and supply shortfall
 - System disruption
 - NatCat e.g. significant snow, wind, fire and flooding, earthquake, tsunami, volcanic eruption
- Currently considering with the Electricity
 Authority whether space weather could be
 the focus topic of the 2026 Industry Exercise.
 More details will be provided closer to the
 time.

em6 data platform updates

Nick Warren, Product Owner

https://app.em6.co.nz/


Grid Pricing Update

Victoria Parker, Head of Grid Pricing

Will Hancock, Regulatory Advisor - Grid Pricing

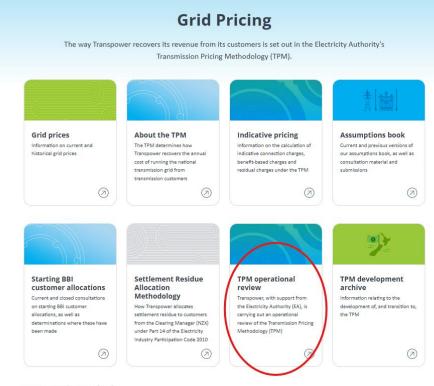
Transmission Prices

- On Friday last week we notified our customers of their charges for the pricing year starting 1 April 2026 (PY2026/27)
- Please refer to your customer ECHO pages for company-specific and general pricing information
- We'll be publishing information about PY2026/27 prices on our website later this week
- Any queries email us at pricingteam@transpower.co.nz

Operational review

We are seeking members for an industry working group to support a targeted review of the TPM.

The TPM working group's purpose is to inform, test and help validate:


- Transpower's analysis of problems identified with the TPM and its implementation.
- potential changes Transpower may propose to the TPM (which would be submitted for consideration by the Authority).

The key objectives of the operational review are:

- Refinement of adjustment mechanisms.
- Reconsidering the delineation between the simple and standard methods for calculating Benefit-Based Charges (BBCs).
- Refinement of BBC charge calculations and their inputs to reduce the need for Transpower to exercise
 judgement, and to reduce complexity, volatility and uncertainty. Overall, to enhance and support stakeholders'
 ability to understand, replicate and reliably forecast BBCs and, by extension, transmission charges.
- Ensuring First Mover Disadvantage and Prudent Discount provisions are appropriate for evolving electrification scenarios.

Operational review

- More information on the operational review is available on our website https://www.transpower.co.nz/tpm-operational-review
- Any questions get in touch with us
- Email: tpmreview@transpower.co.nz
- Sign up for newsletters

OUR WORK / Industry / Grid Pricing

Top questions asked

What's coming up

- Mid January Re-consultation on NZGP1 BBI allocations
- Mid January Launch of our targeted customer journey learning pages
- Early February Kick off TPM working group
- February/March Consultation on first tranche of issues and options under the operational review
- Late February Consultation on updates to Assumption Book

Connections Update – end of year wrap

Rupert Holbrook, Customer Connections Project Director

Generation 2025

- Volumes remain healthy
- Wait times down
- Expecting delivery pickup

Connection Pipeline – December 2025

(Generation and energy storage)

Total pipeline = 92 projects (23,706, MW)

Application stage

Dec 2024

35 projects (7693 MW)

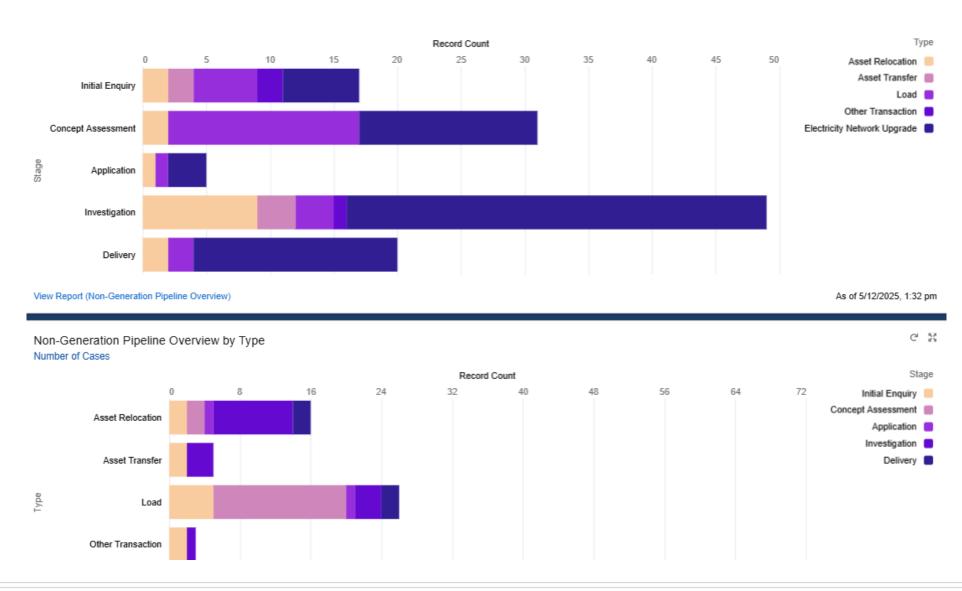
Investigation stage

37 projects (5393 MW)

Delivery stage

14 projects (1948 MW)

Notes



Following an update to Transpower's customer management tools during October 2025, stage counts still show the number of Transpower connections, while generation and storage technologies are now tracked individually, so technology counts represent the number of technologies connecting. Each connection may have more than one technology, e.g. Solar + BESS.

Number of projects includes those currently on hold at the customer's request (10 in investigation, three in delivery).

Load 2025

- Wait times down
- Increasing process heat electrification
- Significant ongoing data centre interest

Concept Solution Proposals

- First trials complete
- Now embedding as BAU for most new investigations
- Commits customer and TP
- Covers design, schedule and resourcing
- Interaction with 'Area grid planning'
- Potential for some projects to then go straight to TWA

Harmonic reports

 First set of annual reports now available through our Echo document sharing hub

Questions

TRANSPOWER.CO.NZ

Thank you

Next webinar: 2026

TRANSPOWER.CO.NZ

Unuhia, unuhia,
Unuhia ki te uru tapu nui
Kia wātea, kia māmā, te ngākau,
Te tinana, te wairua, i te ara tangata
Koia rā e Rongo, whakairia ake ki runga
Kia tina! Tina! Hui e! Tāiki e!

Closing **Karakia**

Translation

Draw on, draw on draw on the supreme sacredness to clear, to free the heart, the body and spirit of humankind That is Rongo suspended high above us Draw together! Affirm!

